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Abstract

Market-makers serve an important role as providers
of liquidity and order in financial markets, partic-
ularly during periods of high volatility. Optimal
market-makers solve a sequential decision making
problem, where they face an exploration versus ex-
ploitation dilemma at each time step. A belief
state MDP based solution was presented by Das
and Magdon-Ismail [2008]. This solution how-
ever, was closely tied to the choice of a Gaussian
belief state prior and did not take asset inventory
into consideration when calculating an optimal pol-
icy. In this work we introduce a novel contin-
uous state POMDP framework which is the first
to solve, exactly and in closed-form, the optimal
market-making problem with inventory, fixed as-
set value, arbitrary belief state priors, trader mod-
els and reward functions via symbolic dynamic pro-
gramming. We use this novel model and solution to
show that sequentially optimal policies are heavily
inventory-dependent and calculate policies that op-
erate with bounded loss guarantees under a variety
of market models and conditions.

1 Introduction
Financial markets are well known for their volatility [Man-
delbrot, 1963; Sornette, 2004; Volt, 2005]. A prime driver
of high volatility are periods of great uncertainty, such as
those following price shocks, about the value of the as-
sets being traded. These periods can lead to sparse trad-
ing, where there are few offers and counter-offers, which
effectively stop markets from functioning. Market-makers
(MMs) can be used in these situations to attract trading and
maintain order in markets. Examples of markets which em-
ploy MMs include the NASDAQ, which allows for multi-
ple MMs to compete, and prediction markets [Hanson, 2003;
2007].

Market-makers do not perform their services ex gratia.
They aim to extract a profit, which is a component of what
is known as the bid-ask spread. When setting the bid and ask
price, MMs must trade-off between setting prices to extract
maximum profit from the next trade versus setting prices to

get as much information about the new value of the asset so
as to generate larger profits from future trades.

In this paper we recast the sequential market-making prob-
lem as a new general class of continuous state Partially
Observable MDPs (POMDPs) [Kaelbling et al., 1998] that
subsumes our proposed market-making model and admits
closed-form solutions. We also provide a Symbolic Dynamic
Programming (SDP) [Boutilier et al., 2001] based algorithm
that can efficiently derive a value function and policy for this
new class of POMDPs.

By utilising the POMDP framework we enable several new
advances in algorithmic market-making:

• We are the first to address the open question of sequen-
tially optimal market-making with inventory based rea-
soning by extending the seminal work of Glosten and
Milgrom [1985], Amihud and Mendelson [1980] and
Das and Magdon-Ismail [2008].

• Our solution is more general than previous solutions and
allows the use of arbitrary belief state priors to repre-
sent the MM’s uncertainty about the true value of the as-
set, asymmetric bid-ask spreads around the mean of the
MM’s belief, flexible models of trader behaviour and a
variety of inventory-based rewards with both hard con-
straints and preferences.

• Our solution provides sequentially optimal policies
which maximise MM profit under a variety of inven-
tory conditions and trader models, while simultane-
ously bounding loss. Previous solutions which neglected
inventory are prone to selecting sub-optimal bid-ask
spreads which may lead to unexpected losses.

2 Background
Market-makers serve an important liquidity provision role in
many financial markets by providing immediacy to transac-
tions. In practice MMs often operate in tandem with a con-
tinuous double auction [Smith et al., 2003] market structure
in which both buyers and sellers submit limit orders in the
form of bids and asks which are then matched algorithmi-
cally. Theoretical models of market-making typically abstract
away limit orders from other traders and model the market as
a dealer market, with the MM taking one side of every or-
der. In these models it is common for the MM to quote a



bid price, a price at which they are willing to buy some num-
ber of shares, and an ask price, the price at which they are
willing to sell some number of shares, at every point in time.
The difference between the two prices, known as the bid-ask
spread, serves three main purposes: (1) to provide an incre-
mental profit to motivate the MM to actually provide their
services; (2) to compensate the MM for the risk inherent in
holding inventory [Amihud and Mendelson, 1980]; and (3) to
compensate the MM for the adverse selection encountered in
trading with a potentially more informed population [Glosten
and Milgrom, 1985].

In recent history, research into algorithmic market-making
has focussed on financial [Das, 2008] and prediction market
settings [Chen and Pennock, 2007; Othman and Sandholm,
2012]. Market-making in prediction markets starts from the
notion of a proper Market Scoring Rule (MSR) [Hanson,
2003]. Proper MSRs are both myopically incentive compati-
ble, that is, they incentivize agents to move prices to their val-
uation, and are also loss-bounded, at least in bounded-payoff
markets. Despite these attractive features, proper MSRs are,
in general, loss-making [Pennock and Sami, 2007] and MMs
using proper MSRs must be subsidised in order to perform
their task of liquidity provision. Although there has been
some theoretical work on the design of MMs that can adapt
their spread over time [Othman et al., 2010] they can be
highly sensitive to the price path [Brahma et al., 2012].

Learning based approaches to market-making in financial
markets attempt to infer either underlying values or future
prices based on trader models [Das, 2008; Das and Magdon-
Ismail, 2008] or time-series analysis of prices [Chakraborty
and Kearns, 2011]. Such models have been used to formulate
efficient algorithms under zero-profit (competitive) condi-
tions where, in perfect competition, the MM is pushed to set-
ting bid and ask prices that yield a zero expected profit [Das,
2005]. An algorithm for a profit-maximising (monopolist)
MM was presented by Das and Magdon-Ismail [2008]. In
this setting with a fixed underlying asset value, bid and ask
prices are set in a way that maximises the total discounted
profit obtained by the MM. The profit-maximising market-
making algorithm was cast as a belief state MDP where the
MM’s belief about the value of the asset was described by a
Gaussian density function. The MM sets bid and ask prices
based on the solution of the Bellman equation for a Gaussian
belief state approximation of this MDP. While these models
are promising in terms of their potential to provide liquidity
while simultaneously operating at a profit, they come with no
guarantees on worst case loss, since they do not take inven-
tory into account when setting prices.

In this paper we study the problem of optimising profit
while still maintaining inventory-sensitivity, the natural way
to bound risk in the market-making setting. We present a
new formalism for optimal sequential market-making based
on continuous state POMDPs which allows for arbitrary be-
lief state distributions, asymmetric bid-ask spreads, flexible
trader models and a variety of inventory-based rewards, while
still admitting exact closed-form solutions.

3 Market-Making as a POMDP
In this section we introduce our first contribution, a novel and
flexible continuous state POMDP framework for sequentially
optimal market-making with inventory that admits closed-
form dynamic programming solutions.

3.1 POMDP Preliminaries
A POMDP is defined by the tuple
〈S,A, T ,R,O,Ω,H, γ〉 [Kaelbling et al., 1998]. S specifies a
potentially infinite (e.g., continuous) set of states whileA and
O respectively specify a finite set of actions and observations.
The transition function T : S × A × S → [0, 1] defines the
effect of an action on the state. Ω : O × A × S → [0, 1] is
the observation function which defines the probability of
receiving an observation given that an agent has executed
an action and reached a new state. R : S × A → R is the
reward function which encodes the preferences of the agent.
H represents the number of decision steps until termination
and the discount factor γ ∈ [0, 1) is used to geometrically
discount future rewards.

Partial observability is encapsulated within a probabilistic
observation model specified by O and Ω, which relates pos-
sible observations to states. POMDP agents maintain a belief
b ∈ ∆(S), a probability distribution over S. Beliefs provide
sufficient statistics for the observable history of a POMDP
agent without loss of optimality [Aström, 1965].

The objective of a POMDP agent is to find an optimal pol-
icy π∗ : ∆(S) → A, which specifies the best action to take
in every belief state b so as to maximise the expected sum of
discounted rewards over the planning horizon H. The value
function under the optimal policy can be written as:

V ∗(b) = Eπ∗

[
H∑
h=0

γh
∑
s∈S

R
(
s, π∗(bh(s))

)
· bh(s)

∣∣b0 = b

]
.

The POMDP value function can be parameterized by a fi-
nite set of functions linear in the belief representation known
as α-vectors and is convex in the belief [Sondik, 1971].

The value function at a given belief b ∈ ∆(S) can be calcu-
lated using:

V h(b) = max
α∈V h

∑
s∈S

α(s) · b(s).

Monahans exact Value Iteration [Monahan, 1982] algo-
rithm has been extended to a more efficient class of point-
based algorithms [Pineau et al., 2003] which considers only
a finite subset of the belief space B. We cover such meth-
ods in Section 4.2. The results from the discrete state setting
presented above can be generalised to the continuous case by
replacing s, α-vectors and

∑
by their continuous state coun-

terparts ~x, α-functions and
∫

, respectively [Porta et al., 2006].
In the next section we show how the expressive POMDP

framework can be used to encapsulate an optimal sequential
market-making model with inventory.

3.2 Optimal Sequential Market-Making Model
The market-making model used in this paper extends the
seminal theoretical model of Glosten and Milgrom [1985]
and the sequential model of Das and Magdon-Ismail [2008]
by incorporating the inventory control conditions of Amihud



and Mendelson [1980] as well as arbitrary belief state priors,
trader models and asymmetric bid-ask spreads.

We begin by formulating the MM’s sequential decision
problem in the POMDP framework:

• S = 〈v, i〉, where v ∈ R+ represents the value of the asset
and i ∈ N represents the MM’s inventory.

• A = {(bid1, ask1) , . . . , (bidN , askN )} represents a finite
set of allowed N bid-ask pairs, where bidn, askn ∈ R+

and bidn < askn.

The bid represents the price at which the MM is willing to
buy one unit of the asset and the ask is the price at which the
MM is willing to sell one unit of the asset.

• O = {buy , sell , hold} represents the possible actions of a
trader at each time step.

At each time step the MM interacts with a trader t drawn
from a heterogeneous population of traders with a known
prior distribution. The trader has an uninformed estimate of
the value of the asset vt = v + εt, where εt ∈ R specifies
the noise. In this paper we allow the traders to be speci-
fied according to two trader models: (1) Glosten-Milgrom
(GM) [Glosten and Milgrom, 1985]; and (2) Discrete noise
(D). In the traditional GM setting, traders are either informed
or uninformed, with εt set to 0.0. The Discrete setting in-
volves informed, over-valuing and under-valuing traders,
with εt set to 0.0, constant c ∈ R and constant −c ∈ R, re-
spectively.

With the exception of uninformed traders, an arriving
trader of type t will execute a buy order at an ask price askn
if vt > askn, a sell order at the bid price bidn if vt < bidn,
and will hold otherwise. We use an intermediate variable
u ∼ P(O), with P(u) = 1/3 for uninformed trader orders.

• The transition function T for each state variable in S is
given by:
T (i′|i, v, bid, ask, t = informed, u) =

δ

i′ −


(v > ask + εt) ∧ (i ≥ 1) : i− 1

(v < bid+ εt) : i+ 1

otherwise : i


T (i′|i, v, bid, ask, t = uninformed, u) =

δ

i′ −


(u = buy) ∧ (i ≥ 1) : i− 1

(u = sell) : i+ 1

otherwise : i


T (v′|i, v, bid, ask, t, u) = δ [v′ − v]

The Dirac function δ[·] ensures that the transitions are valid
conditional probability functions that integrate to 1.0. The
value v is assumed to be fixed but unknown to the MM. The
inventory i increments or decrements according to the ob-
served trader action.

• The observation function Ω for each trader action is
specified by:

v

i

b

a

t u

v'

i'

o

R

Figure 1: An optimal sequential market-making continuous
state POMDP. S = v, i. b, a ∈ A, o ∈ O and R = R. t and
u are intermediate variables. Primed variables represent the
“next state” of the variable. Arrows represent a dependency.

Ω (buy |i, v, bid, ask, t = informed, u) ={
(v > ask + εt) ∧ (i ≥ 1) : 1

otherwise : 0

Ω (sell |i, v, bid, ask, t = informed, u) ={
(v < bid+ εt) : 1

otherwise : 0

Ω (hold |i, v, bid, ask, t = informed, u) ={
(v > bid+ εt) ∧ (v < ask + εt) : 1

otherwise : 0

Ω (o|i, v, bid, ask, t = uninformed, u) = I [o = u]

Ω encodes the signal received by the MM upon the action
taken by the trader. We note that information is conveyed only
by the direction of the trade. In the case of an uninformed
trader, the observation follows directly from their probabilis-
tic choice determined in the transition function.

• The reward functionR, which constrains inventory to be
non-negative, is specified as:
R(i′, v′, bid, ask, t = informed, u) =

(v′ + εt > ask) ∧ (i′ ≥ 1) : ask

(v′ + εt < bid) : −bid
(v′ + εt > bid) ∧ (v′ + εt < ask) : 0

(v′ + εt > ask) ∧ (i′ < 0) : 0

otherwise : −∞
R(i′, v′, bid, ask, t = uninformed, u) =

u = buy ∧ (i′ ≥ 1) : ask

u = sell : −bid
u = hold : 0

The reward received by the MM is dependent upon the action
executed by the trader. In the case of a buy order, the MM
receives the ask price, a sell order results in the MM paying
the bid price, whereas a hold order results in no loss or gain.
Our market-making model allows for an expressive class of
reward functions that are piecewise linear in the value, inven-
tory, and bid and ask prices. Hard constraints, such as the
non-negative inventory condition, can be encoded using −∞.
Soft constraints, such as penalising linear deviations from a
target inventory level, can be encoded using finite piecewise
linear rewards.



The aim of the MM is to maximise its reward over a plan-
ning horizon H. In order to do this the MM must trade-off
profit taking, which can be seen as exploiting a certain bid-
ask pair, and price discovery, where the MM explores other
bid-ask pairs in A. Figure 1 shows our model graphically.

As a critical insight in this work, we remark that by for-
mulating the optimal sequential market-making model as a
continuous state POMDP it is possible to separate belief state
considerations from the dynamic programming solution. In
subsequent sections we show that our model leads to an el-
egant piecewise linear structure in the α-functions derived
through an SDP solution. This is in stark contrast with the
approach of Das and Magdon-Ismail [2008] which required
non-linear operations that complicate the consideration of in-
ventory.

4 Symbolic Dynamic Programming

In this section we make our second contribution by show-
ing how the continuous state POMDP based optimal sequen-
tial market-making model can be solved in closed-form via
a Symbolic Dynamic Programming (SDP) [Boutilier et al.,
2001] based version of PBVI [Pineau et al., 2003].

4.1 Symbolic Case Calculus

SDP assumes that all functions can be represented in case
statement form [Boutilier et al., 2001] as follows:

f =


φ1 : f1

...
...

φk : fk

Here, the φi are logical formulae defined over the state ~x
that can consist of arbitrary logical combinations of boolean
variables and linear inequalities (≥, >,<,≤) over continuous
variables. We assume that the set of conditions {φ1, . . . , φk}
disjointly and exhaustively partition ~x such that f is well-
defined for all ~x. In this paper we restrict the fi to be either
constant or linear functions of the state variable ~x. Hence-
forth, we refer to functions with linear φi and piecewise con-
stant fi as linear piecewise constant (LPWC) and functions
with linear φi and piecewise linear fi as linear piecewise lin-
ear (LPWL) functions.

Operations on case statements may be either unary or bi-
nary. All of the operations presented here are closed-form for
LPWC and LPWL functions. We refer the reader to [Sanner
et al., 2011; Zamani and Sanner, 2012] for more thorough
expositions of SDP for piecewise continuous functions.

Unary operations on a single case statement f, such as
scalar multiplication c · f where c ∈ R, are applied to each
fi (1 ≤ i ≤ k). Binary operations such as addition, subtrac-
tion and multiplication are executed in two stages. Firstly,
the cross-product of the logical partitions of each case state-
ment is taken, producing paired partitions. Finally, the binary
operation is applied to the resulting paired partitions. The
“cross-sum” ⊕ operation can be performed on two cases in
the following manner:

{
φ1 : f1

φ2 : f2
⊕

{
ψ1 : g1

ψ2 : g2
=


φ1 ∧ ψ1 : f1 + g1

φ1 ∧ ψ2 : f1 + g2

φ2 ∧ ψ1 : f2 + g1

φ2 ∧ ψ2 : f2 + g2

“cross-subtraction” 	 and “cross-multiplication” ⊗ are de-
fined in a similar manner but with the addition operator re-
placed by the subtraction and multiplication operators, re-
spectively. Some partitions resulting from case operators may
be inconsistent and are thus removed.

In principle, case statements can be used to represent
all POMDP components, i.e., R(~x, a), T (~x, a, ~x′), Ω(o, a, ~x′),
α(~x) and b(~x). In practice, case statements are implemented
using a more compact representation known as Extended Al-
gebraic Decision Diagrams (XADDs) [Sanner et al., 2011],
which also support efficient versions of all of the aforemen-
tioned operations.

4.2 Closed-form Symbolic PBVI for Continuous
State POMDPs

In this section we extend the Symbolic PBVI algorithm of
Zamani et al. [2012] by relaxing its LPWC assumption to
the more general LPWL case. We also show that the set of
α-functions in the solution are LPWL functions that permit
efficient computation. Symbolic PBVI for continuous state
(and discrete A) POMDPs can be written solely in terms of
the following case operations:

αa,o,hi = R(~x, a) · 1

|O|+

γ ⊗
∫

Ω(o, a, ~x′)⊗ T (~x, a, ~x′)⊗ αi(~x′) d~x′,

∀αi(~x′) ∈ V h−1 (1)

Γa,o,h =
⋃
i

{
αa,o,hi

}
Γa,hb =

∑
o∈O

argmax
α∈Γa,o,h

(α · b)

αhb = argmax
Γ
a,h
b

,a∈A

(
Γa,hb · b

)
, ∀b ∈ B

V h =
⋃
b∈B

{
αhb

}
To calculate the optimal h-stage-to-go value function we

modify the Bellman backup in Equation (1) to the following
form where we marginalize out intermediate variables for the
trader type t and outcome u:

αa,o,hi =
⊕
u

⊕
t

P(t) · R(~x, a, t, u) · 1

|O|+

γ ⊗
∫

Ω(o, a, ~x′, t, u)⊗ T (~x, a, ~x′, t, u)⊗ αi(~x′) d~x′,

∀αi(~x′) ∈ V h−1 (2)

In Equation (2) the backup operation is calculated as an
expectation over trader types t in a given trader model and
observations u ∈ {buy , sell , hold} from uninformed traders.
We note that this algorithm can be easily extended to very
long horizons through model predictive control methods [Qin
and Badgwell, 2003] which optimise a single-step look-ahead
followed by the execution of a static policy.



A critical insight in this work is that all operations used in
the algorithm are closed-form for LPWC representations of
Ω(·) and LPWL representations of T (·) and R(·) [Sanner et
al., 2011; Zamani and Sanner, 2012]. A LPWC Ω(·) ensures
that the α-functions are LPWL and closed-form after the
Bellman backup operation; the integration operation in Equa-
tion (2) results in a LPWL function. In contrast, a LPWL Ω(·)
would not result in a closed-form LPWL α-function. There-
fore, by induction, the Symbolic PBVI value function V h re-
mains closed-form for arbitrary horizons. This result holds
for the subclass of continuous state POMDPs with the afore-
mentioned representations of Ω(·), T (·) and R(·), of which
the optimal sequential market-making model in Section 3.2 is
an instance.

Symbolic PBVI gives a lower bound on the optimal exact
VI [Monahan, 1982] value function and, if all belief states
are enumerated to H, the solution is optimal. In the context
of optimal sequential market-making, the lower bound policy
guarantees that the MM makes at least as much profit as indi-
cated by the PBVI value function evaluated at a belief state.

5 Results
In this section we demonstrate that our novel optimal sequen-
tial market-making model: (1) is sequentially optimal; (2)
utilises inventory based reasoning; (3) works with flexible
trader models; and (4) is computationally tractable.

As far as we are aware, our model is the first to demonstrate
these properties exactly and in closed-form. We note that the
work of Das and Magdon-Ismail [2008] is restricted to Gaus-
sian initial beliefs, the traditional GM trader model and does
not reason about inventory.

5.1 Experimental Settings
For each of the analyses an initial set of beliefs over S = 〈v, i〉
is used to generate the set of all reachable beliefs B to H.
Trader proportions under the Glosten-Milgrom and Discrete
models were set to P(t) = 0.5 and P(t) = 1/3, respectively.
The noise under the Discrete model for over-valuing and
under-valuing traders was set to 10.0 and−10.0, respectively.
While we can effectively solve for H = 30 or more, we in-
tentionally restrict the horizon to H = 3 in the initial set of
evaluations for purposes of interpretation and explanation.

5.2 Sequential Optimality
In Figure 2 we present the sequentially optimal policy of
our MM operating within the Glosten-Milgrom trader model
with an initial belief of 〈{U [0.0, 50.0], U [50.0, 100.0]} , 1.0〉
and A =

{
(bid, ask) |(bid < ask), bid, ask ∈

{0.0, 25.0, 49.0, 51.0, 75.0, 99.0}
}

.
We can see that the MM changes the optimalH = 3 bid-ask

pair of [0.0, 75.0] in response to trader actions: the ask price
is raised in response to a buy , lowered following a hold and
unchanged in the event of a sell order. The actions chosen
at H = 2 reflect the optimal choice given the MM’s updated
belief. At H = 1 the MM chooses actions that ensure that
a trader will buy , contingent upon having positive inventory.
Furthermore, an optimal bid price of 0.0 is used by the MM
for all H, which is due to there being a non-zero probability

(0.0, 75.0)

(0.0, 99.0)

(0.0, 51.0)

(0.0, 99.0)

(0.0, 99.0)

(0.0, 99.0)

(0.0, 51.0)

(0.0, 75.0)

(0.0, 75.0)

(0.0, 51.0)

hold

sell

hold

(0.0, 75.0)
sell

(0.0, 49.0)hold

(0.0, 51.0)hold

buy

sell

sell

buy

buy

buy

Figure 2: Sequentially optimal policy for an initial belief of
〈{U [0.0, 50.0], U [50.0, 100.0]} , 1.0〉. Nodes represent actions
a ∈ A and arrows represent an observation o ∈ O.

that an uninformed trader will sell to the MM at this bid
price, a fact which the MM exploits. The sequence of actions
show how the MM chooses to (asymmetrically) modulate its
bid and ask prices to explore market value while protecting
itself against inventory constraints.

5.3 Inventory Sensitivity
In Figure 3 we present the optimal H = 3 actions of our
MM operating within the Glosten-Milgrom trading model
with different initial beliefs and A =

{
(bid, ask)|(bid <

ask), bid, ask ∈ {20.0, 40.0, 60.0, 80.0, 100}
}

. Upon compar-
ing Figure 3a and Figure 3b we notice that, with the exception
of the i = 0.0 case, a narrow initial value belief has a narrower
optimal bid-ask spread. It is also evident that the MM uses
higher ask prices when the trader population comprises of a
higher proportion of uninformed traders. In summary, from
Figure 3 we can clearly see that the MM sets its bid and ask
prices based on its initial beliefs, characteristics of the trader
population and inventory levels.

5.4 Trader Models
In the previous two experiments we showed how the optimal
sequential market making-model presented in this paper can
be used to calculate sequentially optimal and inventory sensi-
tive policies, the two major contributions to algorithmic mar-
ket making. In this experiment we demonstrate the flexibility
of the model by examining the affect of different trader mod-
els on the MM’s optimal bid and ask prices. In Figure 4 we
present the optimal α-functions of our MM operating within
the Glosten-Milgrom and Discrete trading model with an
initial belief of 〈{U [0.0, 50.0], U [50.0, 100.0]} , 1.0〉 and A ={

(bid, ask)|(bid < ask), bid ∈ {0.0, 25.0, 50.0, 75.0} , ask ∈
{50.0, 75.0, 100.0}

}
.

In Figure 4a we can observe three distinct optimal actions
in the α-function plots. If we set the width to 0.0 and vary
the mean, we notice that [0.0, 100.0] exploits the actions of
uninformed traders who are equally likely to sell or buy . In
the regions where [0.0, 50.0] and [0.0, 75.0] are optimal, we
note that as the mean increases above the ask price, the MM
is more likely to receive buy orders from an informed trader.
In Figure 4b we can see two interesting trends with respect
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(a) Initial value belief of v ∼ U [0.0, 100.0].
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(b) Initial value belief of v ∼ U [49.0, 51.0].

Figure 3: Optimal bid and ask prices under different market
settings. The initial inventory level i ∈ {0, 1, 2}. (bid1, ask1)
and (bid2, ask2) are the optimal prices for a trader population
comprising of 50% and 10% uninformed traders, respectively.
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Figure 4: Optimal α-functions for i = 1.0 under different
trader models. The upper surface of the plot indicates the op-
timal α-function for the market-maker’s value belief defined
by v ∼ U [m− w,m+ w], for a given mean m and width w.

to the optimal actions. Firstly, when the MM is certain about
the value, they select actions with increasing ask prices. This
phenomenon also occurs when uncertainty about the mean
value increases. For example, when the MM becomes in-
creasingly uncertain about a mean value of 70.0, they use ac-
tions with a wider bid-ask spread. From Figure 4 it is evi-
dent that models of trader noise have a dramatic affect on the
MM’s optimal actions. Therefore, it is critical for an algo-
rithmic market-making model to be flexible with regards to
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Figure 5: Time and space versus horizon H. Space is mea-
sured in the total number of XADD nodes used to represent
α-function case statements.

its reasoning about traders.

5.5 Time and Space Complexity
Figure 5 shows the relationship between horizon H, compu-
tation time and space using a dynamic programming model
predictive control approach. It is clear that computation for
moderate H remains tractable. The space requirement grows
at a rate greater than time due to an inflation in the number of
observation partitions per α-function. This in turn increases
the computation time per backup operation.

6 Conclusions and Future Work
In this paper, we have introduced the first optimal solution
to sequential market-making with inventory based reasoning.
We showed that by formulating the market-making problem
as a new subclass of continuous state POMDPs, we substan-
tially generalize the previous state of the art solution [Das and
Magdon-Ismail, 2008] by allowing for more flexibility in the
definition of prior beliefs (arbitrary in our formulation) and
trader noise models, while also incorporating inventory con-
straints and operating with a bounded loss. We also provide
a novel SDP solution, which allows us to solve this new sub-
class of POMDPs, and not just a particular market-making
problem, in closed form.

There are a number of avenues for further research.
Firstly, it is important to explore more expressive represen-
tations of the underlying market microstructure model such
as incorporating different order sizes, their affect on mar-
ket price and stealth trading by informed traders [Easley
and O’Hara, 1987]. Another possible extension is to learn
trader models from the order stream by using continuous
extensions of Bayesian reinforcement learning methods for
POMDPs [Poupart et al., 2006]. In an orthogonal direc-
tion, we can explore POMDP Monte Carlo Tree Search
(MCTS) [Silver and Veness, 2010] alternatives to PBVI.
Although MCTS cannot guarantee lower bound policies
like PBVI does, it may scale to larger and more complex
POMDPs. These extensions may then be used collectively
to model and solve optimal sequential market-making in
more complex financial domains. In summary, the modelling
and algorithmic contributions in this work opens up an en-
tirely new way to investigate market microstructure, trader
noise and inventory models in algorithmic sequential market-
making.
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